일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- TypeConverterMarkupExtensionthrew an exception
- 스프링부트3
- ajax 2개 부르기
- 고려사이버대학교 인공지능
- 자율주행딥러닝
- 그누보드
- 미드저니
- 리액트데쉬보드
- 금융의힘
- 피그마오류
- clearbridge investments #unity software
- compyUI
- 리액트
- 경제를보는눈
- suno ai
- 넥시온
- 그누보드 짧은글주소
- 대시보드 프로젝트
- 달리3
- KBS걸작 다큐 돈의힘
- 벡터db
- react
- 3d lidar
- 영카트
- 플러터생성파일
- wpf
- 엑셀수식 암호
- 스테이블디퓨젼
- blazor
- vector dbms
- Today
- Total
ClemensKim - kyj909
Relevance Ranking for Vertical Search Engines 본문
역시 드럽게 어렵구만...
Relevance Ranking for Vertical Search Engines
CHAPTER 1 Introduction.............................................................. 1
1.1 Defining the Area.............................................................................1
1.2 The Content and Organization of This Book...................................1
1.3 The Audience for This Book............................................................5
1.4 Further Reading...............................................................................5
CHAPTER 2 News Search Ranking................................................ 7
2.1 The Learning-to-Rank Approach.....................................................7
2.1.1 Related Works.......................................................................8
2.1.2 Combine Relevance and Freshness......................................8
2.2 Joint Learning Approach from Clickthroughs...............................10
2.2.1 Joint Relevance and Freshness Learning............................12
2.2.2 Temporal Features..............................................................14
2.2.3 Experiment Results.............................................................17
2.2.4 Analysis of JRFL................................................................19
2.2.5 Ranking Performance.........................................................24
2.3 News Clustering.............................................................................27
2.3.1 Architecture of the System.................................................29
2.3.2 Offline Clustering...............................................................30
2.3.3 Incremental Clustering.......................................................33
2.3.4 Real-Time Clustering.........................................................34
2.3.5 Experiments........................................................................37
Summary .......................................................................................42
CHAPTER 3 Medical Domain Search Ranking.............................. 43
Introduction ...................................................................................43
3.1 Search Engines for Electronic Health Records..............................44
3.2 Search Behavior Analysis..............................................................47
3.3 Relevance Ranking........................................................................49
3.3.1 Insights from the TREC Medical Record Track.................50
3.3.2 Implementing and Evaluating Relevance
Ranking in EHR Search Engines........................................52
Contents
vi Contents
3.4 Collaborative Search......................................................................54
3.5 Conclusion.....................................................................................57
CHAPTER 4 Visual Search Ranking............................................ 59
Introduction ...................................................................................59
4.1 Generic Visual Search System.......................................................60
4.2 Text-Based Search Ranking...........................................................61
4.2.1 Text Search Models............................................................61
4.2.2 Textual Query Preprocessing..............................................62
4.2.3 Text Sources.......................................................................63
4.3 Query Example-Based Search Ranking.........................................64
4.3.1 Low-Level Visual Features.................................................64
4.3.2 Distance Metrics.................................................................65
4.4 Concept-Based Search Ranking....................................................68
4.4.1 Query-Concept Mapping....................................................68
4.4.2 Search with Related Concepts............................................70
4.5 Visual Search Reranking................................................................71
4.5.1 First Paradigm: Self-Reranking..........................................71
4.5.2 Second Paradigm: Example-Based Reranking...................73
4.5.3 Third Paradigm: Crowd Reranking....................................74
4.5.4 Fourth Paradigm: Interactive Reranking.............................75
4.6 Learning and Search Ranking........................................................76
4.6.1 Ranking by Classification...................................................76
4.6.2 Classification vs. Ranking..................................................77
4.6.3 Learning to Rank................................................................78
4.7 Conclusions and Future Challenges...............................................80
CHAPTER 5 Mobile Search Ranking........................................... 81
Introduction ...................................................................................81
5.1 Ranking Signals.............................................................................83
5.1.1 Distance..............................................................................84
5.1.2 Customer Reviews and Ratings..........................................84
5.1.3 Personal Preference............................................................85
5.1.4 Search Context: Location, Time,
and Social Factors...............................................................85
5.2 Ranking Heuristics.........................................................................87
5.2.1 Dataset and Experimental Setting......................................88
5.2.2 Customer Rating.................................................................90
5.2.3 Number of Reviews............................................................95
5.2.4 Distance..............................................................................96
5.2.5 Personal Preference............................................................99
Contents vii
5.2.6 Sensitivity Analysis..........................................................102
5.3 Summary and Future Directions..................................................104
5.3.1 Evaluation of Mobile Local Search..................................104
5.3.2 User Modeling and Personalized Search..........................105
CHAPTER 6 Entity Ranking....................................................... 107
6.1 An Overview of Entity Ranking..................................................107
6.2 Background Knowledge..............................................................109
6.2.1 Terminology.....................................................................109
6.2.2 Knowledge Base...............................................................111
6.2.3 Web Search Experience....................................................112
6.3 Feature Space Analysis................................................................113
6.3.1 Probabilistic Feature Framework......................................113
6.3.2 Graph-Based Entity Popularity Feature............................115
6.4 Machine-Learned Ranking for Entities.......................................116
6.4.1 Problem Definition...........................................................117
6.4.2 Pairwise Comparison Model............................................117
6.4.3 Training Ranking Function...............................................119
6.5 Experiments.................................................................................120
6.5.1 Experimental Setup..........................................................120
6.5.2 User Data-Based Evaluation.............................................121
6.5.3 Editorial Evaluation..........................................................124
6.6 Conclusions..................................................................................125
CHAPTER 7 Multi-Aspect Relevance Ranking............................ 127
Introduction .................................................................................127
7.1 Related Work...............................................................................129
7.2 Problem Formulation...................................................................131
7.2.1 Learning to Rank for Vertical Searches............................131
7.2.2 Multi-Aspect Relevance Formulation...............................133
7.2.3 Label Aggregation............................................................133
7.2.4 Model Aggregation...........................................................134
7.3 Learning Aggregation Functions.................................................135
7.3.1 Learning Label Aggregation.............................................135
7.3.2 Learning Model Aggregation............................................137
7.4 Experiments.................................................................................138
7.4.1 Datasets.............................................................................138
7.4.2 Ranking Algorithms..........................................................140
7.4.3 Offline Experimental Results...........................................141
7.4.4 Online Experimental Results............................................143
7.5 Conclusions and Future Work......................................................145
viii Contents
CHAPTER 8 Aggregated Vertical Search................................... 147
Introduction .................................................................................147
8.1 Sources of Evidence....................................................................149
8.1.1 Types of Features..............................................................149
8.1.2 Query Features..................................................................152
8.1.3 Vertical Features...............................................................153
8.1.4 Vertical-Query Features....................................................154
8.1.5 Implementation Details....................................................158
8.2 Combination of Evidence............................................................158
8.2.1 Vertical Selection..............................................................158
8.2.2 Vertical Presentation.........................................................162
8.3 Evaluation....................................................................................166
8.3.1 Vertical Selection Evaluation............................................167
8.3.2 End-to-End Evaluation.....................................................168
8.4 Special Topics..............................................................................176
8.4.1 Dealing with New Verticals..............................................176
8.4.2 Explore/Exploit.................................................................179
8.5 Conclusion...................................................................................179
CHAPTER 9 Cross-Vertical Search Ranking............................... 181
Introduction .................................................................................181
9.1 The PCDF Model.........................................................................182
9.1.1 Problem Formulation........................................................182
9.1.2 Model Formulation...........................................................183
9.2 Algorithm Derivation...................................................................186
9.2.1 Objective Specification.....................................................187
9.2.2 Optimization and Implementation....................................189
9.3 Experimental Evaluation..............................................................191
9.3.1 Data...................................................................................192
9.3.2 Experimental Setting........................................................193
9.3.3 Results and Discussions...................................................193
9.4 Related Work...............................................................................198
9.5 Conclusions..................................................................................200
'IT > 검색엔진' 카테고리의 다른 글
elasticsearch (0) | 2014.03.18 |
---|---|
elasticsearch (0) | 2013.09.07 |
검색엔진 (0) | 2013.04.26 |